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Abstract 

As established in a prior research study, spectral clarity is an important pa-
rameter of high-quality mixes. Two predictors for this are the harmonic cen-
troid (a weighted centre mass of energy of a sound spectrum) and spectral in-
consistencies related to sharp peaks roughly in the middle of the frequency 
spectrum (Hermes et al., 2017). The impact of these predictors on the creative 
process is tested and starting points for further research are established in this 
paper.  

Introduction 
Mixing music is a complicated process where several tracks of recorded 
audio are combined to an overall piece. Difficulties can arise from e.g. time 
constraints or lack of expertise. Research in automatic mixing seeks to work 
towards the development of perceptually informed assistive or fully auto-
mated mix tools. In a previous PhD research study (Hermes et al.: 2017), 
two predictors were developed for one important parameter of music mixes, 
i.e. single sound spectral clarity. As the author is also a creative practitioner 
(artist and producer), the current paper includes discussion on testing the two 
spectral clarity predictors in the mix process of an electronica production. 
The aim here is to assess the usefulness of the predictors and to develop 
starting points for follow-on research. Another aim is to discuss different 
research methods that can be employed in furthering the understanding of 
music mix parameters. The author argues that an interdisciplinary approach, 
drawing on both scientific and creative knowledge, can yield particularly 
useful results. 

The structure of this paper is as follows. Section 1 introduces the field of 
automatic mixing, to provide readers that are less familiar with this area of 
research with an overview of aims and methodologies. Section 2 is a sum-
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mary of the author’s PhD findings. In section 3, two predictors of single 
sound spectral clarity are tested in the mix process and findings are related to 
relevant literature. Section 4 is a discussion with suggestions for further re-
search. 

What is automatic mixing? 
The democratisation of audio technology and advancements in internet file 
sharing have resulted in the delocalization of professional recording studios 
and the decline of traditional record companies (Pras et al.: 2013, pp. 612–
626). Almost anyone can create musical outputs and share these online, 
hence many musical artists are now self-produced (Bell, 2014. pp. 295–312). 
The large number (982) of music related degree courses offered in the UK 
indicates that there are many such artists (What Uni: 2014). Not only music 
artists but also filmmakers and entrepreneurs use media tools which they 
may not be experts in. Music mixing is equally important in the context of 
live music. Audience attendance at UK live music events has recently in-
creased by 12% (Ellis-Peterson: 2017) and live sound mix engineers often 
work under tight time constraints (Biederman and Pattison: 2014). 

Mixing music is a complicated process and traditionally requires exten-
sive ear training and an in-depth understanding of specialized tools and tech-
niques. Most mix tools relate to physical parameters of sound, making it 
difficult for the novice user to understand the connection with perceptual 
parameters (e.g. compression vs. loudness). When musical artists undertake 
the entire creative process alone, this can also result in a lack of objective 
feedback. Recordings taken under less than ideal conditions, such as in “bed-
room” studios, can contain unwanted artefacts and spectral problem areas, 
complicating the mix process further (De Man and Reiss: 2017).  

Since all successful mixes seem to have certain qualities in common, it is 
possible to automate parts of the mix process and to develop powerful, per-
ceptually informed, artificially intelligent (AI) mix tools. The term “automat-
ic mixing” was first used by Dugan (1975) in the context of automatic mi-
crophone gain handling for speech. Today, automatic mix tools are commer-
cially available, including Izotope’s assistive mix tool Neutron and the 
online mastering platform Landr. Existing mix tools range from completely 
autonomous mixing systems to more assistive, workflow-enhancing tools 
and perceptually enhanced interfaces (De Man and Reiss: 2017).  

Many disciplines, including signal processing, music cognition, machine 
learning and human computer interaction contribute to automatic mixing 
research (Scott: 2014). Different approaches exist to solving this complex 
problem. The most common is knowledge engineering (De Man and Reiss: 
2013), where informally known rules for creating high quality mixes are 
implemented in technology. These mixing rules are derived from prosumer 
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mixing guides and the expertise of mix engineers. The second approach is 
grounded theory, which was first presented by Glaser and Strauss (1967) in 
the context of social research. The authors propose that conclusions that are 
grounded in data can be more reliable than conclusions based on existing 
theories. Hence, grounded theory is the discovery of theory from data sys-
tematically obtained through research. De Man and Reiss (2103) relate the 
grounded theory approach to the field of automatic mixing. Here, basic 
knowledge about high quality mixes is acquired first and subsequently trans-
ferred to an intelligent system. In this approach, psychoacoustic studies are 
undertaken to define mix attributes, and perceptual audio evaluation (i.e. 
listener-based experimentation) is employed to determine listener preference 
for mix approaches (Bech and Zacharov: 2006). The grounded theory ap-
proach can be slow and resource intensive. De Man and Reiss (2013) argue 
that therefore, it is too limited to constitute a sufficient knowledge base for 
the implementation of an overall system. Knowledge engineering is a less 
formalized approach (Scott: 2014) and many commonly accepted rules in 
mixing do not hold true in formalized studies, for example the notion that 
most elements should be high pass filtered above their fundamental frequen-
cy (Pestana and Reiss: 2014a). Hence, both approaches have advantages and 
disadvantages. 

De Man and Reiss (2017) provide a useful overview over existing studies 
that seek to automate parts of the mix process. Initial studies contributed to 
the development of tools for the automatic adjustment of e.g. stereo panning 
(Gonzales and Reiss: 2010). Further studies have focussed on automating 
mix parameters such as level (e.g. Wilson and Fazenda: 2016a), reverb (e.g. 
Benito and Reiss: 2017), panning (e.g. Pestana and Reiss: 2014), EQ (spec-
tral equalization, e.g. Hafezi and Reiss: 2015, pp. 312-323) and compression 
(e.g. Ma et al., 2014, pp. 412-426).  

Some studies do not directly develop prototype automatic mix tools but 
instead help further the understanding of important perceptual parameters 
that can feed into the development of such tools (grounded theory). For ex-
ample, Fenton and Wakefield measure perceived punch and clarity in pro-
duced music (Fenton and Wakefield: 2012). Pestana et al. (2013) investigate 
average spectra of commercially recorded pop songs. Wilson and Fazenda 
(2016b) investigate the perception of audio quality in productions of popular 
music. Research in spatial quality perception can also be useful in the field 
of automatic mixing (e.g. Conetta et al.: 2015, pp. 847–860). The author 
took a similar approach in her PhD, as summarized in section 2. 

Motivation and summary of PhD research findings 
The author’s motivation for pursuing a PhD in the field of automatic mixing 
was to investigate whether the quality of music mixes could be measured 
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objectively. There can be disagreement as to what constitutes quality in any 
creative product. Generally agreed quality parameters can help guide this 
discussion, which can be especially useful in an educational context. The 
author is also fascinated with the way in which scientific research and crea-
tivity can enhance each other. In this case, findings in psychoacoustics and 
auditory perception can be used to explain preferences in recorded music.  

During her PhD, the author and her PhD supervisors worked towards 
measuring and modelling the perceived quality of music mixes, taking a 
grounded theory approach. Key findings summarized in the current section 
are all based on the author’s PhD thesis (Hermes et al., 2017). First, relevant 
high-level descriptive mix quality criteria were established through a search 
of scientific and creative literature. These are “clarity and separation”, “bal-
ance”, “impact and interest” and “freedom from technical faults”, alongside 
context-specific parameters. Clarity and separation is the extent to which 
individual components can be heard in a mix. Balance is an even distribution 
of energy in the spatial and frequency domains. Three sub-categories of bal-
ance are horizontal or stereo balance, depth and tonal balance. Horizontal or 
stereo balance is the extent to which sound energy is distributed symmetri-
cally and evenly between the left and right channels (within any given fre-
quency range). Depth is a sense of perspective in a mix, where sound sources 
can be placed at various distances from the listener and inside a fictional, 
reverberant space of a certain size and shape. Tonal balance is the extent to 
which sound energy is distributed evenly across the frequency spectrum. 
Impact and interest is the extent to which the mix grabs the listener’s atten-
tion. Freedom from technical faults is the absence of e.g. unwanted record-
ing artefacts or clipping. Lastly, context specific characteristics are the ex-
tent to which the mix fits current trends, fashions and norms, complements 
artistic purpose and supports the musical content. The latter category relates 
to mix quality parameters that are difficult to generalize, whereas the other 
categories can be measured automatically. An overview of all parameters is 
shown in figure 1. 

Fig. 1: The parameters of high quality music mixes. 
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Clarity and separation were deemed particularly important for music mix 
quality and were therefore investigated further. As established in a literature 
review, clarity and separation in general depend on spectral, spatial and in-
tensity factors and temporal changes in these factors and this is also likely to 
be the case in music mixes. Spectral factors play a particularly important role 
across all areas of literature consulted, i.e. timbral clarity, clarity in concert 
halls, masking, loudness, auditory scene analysis and speech intelligibility. 
Hence, the impact of spectral equalization (EQ) on spectral clarity was in-
vestigated in a series of listener-based experiments. The focus here was on 
changes in the spectral clarity of single, isolated sounds to keep the complex-
ity low. Single sound spectral clarity is the extent to which the spectral shape 
of a sound allows all the important components of its natural timbre to be 
heard. It was established that the clarity of naturally-occurring sounds can be 
increased when low-Q EQ is applied to boost the less-audible higher fre-
quency regions. If EQ exaggerates or introduces timbrally unpleasant spec-
tral inconsistencies, then these can mask or distract from other sonic compo-
nents and lead to a clarity reduction (Hermes et al., 2017).  

Based on these findings, two predictors of relative changes in single 
sound spectral clarity were established. These are the harmonic centroid 
(HC, a weighted centre mass of energy of a sound spectrum, Hermes et al., 
2016) and mid-range spectral peakiness (measuring spectral inconsistencies 
related to sharp peaks roughly in the middle of the frequency spectrum). The 
HC is a weighted mean of a sound’s spectrum, indicating the harmonic at 
which the centre mass of energy is situated. It is defined in Equation 1. 

 
 

 

(Equation 1) 

 
X(k) is the magnitude of frequency bin number f(k) is the centre frequency 
(Hz) of  k , K is the number of bins output from a discrete Fourier transform 
of the sound, and F is the sound’s median fundamental frequency. F is de-
fined as the pitch directly in the middle between the highest and lowest note 
played (Hermes et al. 2017). The HC needs to be raised above around 1.5 
harmonics before clarity increases. Mid-range spectral peakiness is calculat-
ed by measuring the height of sharp peaks in the middle of stimulus long-
term average spectra (LTAS). A computational model was developed that 
fits a curve to the LTAS, such that potentially unpleasant-sounding peaks lie 
above it, while the remaining frequency areas lie below it (Hermes et al., 
2017). The number of data points above the curve are to estimate relative 
changes in mid-range spectral peakiness. The computational model is used in 
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section 3. More information about the model, including a MATLAB down-
load link can be found in Hermes et al. (2017).  

As mentioned earlier, the above findings were mainly tested for isolated 
sounds in order to keep the complexity low. Sounds in mixes were only 
briefly investigated, in the context of one additional listening test (Hermes et 
al., 2017). It was concluded that the predictors are still somewhat useful for 
measuring spectral clarity changes for individual sounds in mixes but the 
presence of the backing track (rest of the mix) means that complex masking 
and fusion phenomena need to be considered additionally. Following the 
analysis of listening test data, it appeared that the more that peaks in the 
target protrude through the backing track, the clearer the target is perceived 
(peak audibility). Hence, interestingly, the contribution of spectral peaks to 
relative changes in clarity appears to depend on the context: when EQ is 
used to increase peaks on the target sound itself, clarity is reduced. However, 
if the audibility of peaks is increased by cutting this area in the surrounding 
backing track, clarity is increased. Therefore, spectral peaks on target sounds 
appear to contribute to clarity in a complex way and further research needs 
to be carried out to investigate this. Spectral peaks will be the focus of the 
next section. 

Testing spectral clarity predictors in the mix process 
In the previous section, PhD findings on the parameters of high quality mix-
es and the spectral clarity of sounds were summarized. The aim of the cur-
rent section is to make informed suggestions for further research by applying 
the findings to the creative process. As an electronic artist (Nyokee), the au-
thor has been writing, producing, performing, mixing and mastering original 
songs for approximately ten years. Since the entire creative process is under-
taken by one person, external, objective feedback on the mix process can be 
useful. Such feedback could be provided through automatic mix tools. 
Therefore, as an initial step towards furthering the understanding of spectral 
clarity in mixes, an autoethnographic study is carried out where the above 
findings are used to mix a track. Like all research methods, autoethnography 
has strengths and weaknesses. 

Ellis et al. (2011) present some of the criticism that autoethnography has 
received as a research method. It is occasionally described as insufficiently 
rigorous, theoretical, and analytical, as conclusions may be based on biased 
data. However, the authors point out that these criticisms erroneously posi-
tion art and science at odds with each other. Similarly, Dwyer investigates 
the question as to whether qualitative researchers should be members of the 
population they are studying. She comes to the conclusion that the dichoto-
my of “insider versus outsider” is misplaced here and that we should instead 
explore the complexity and richness of “the space between entrenched per-
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spectives”. As mentioned in section 2, many disciplines are involved in the 
field of automatic mixing. Therefore, the use of autoethnography may help 
develop a more holistic understanding of spectral clarity and help guide fol-
low-on research. The remainder of this section is structured as follows. In 
section 3.1, the predictors are tested in the mix process and findings are pre-
sented. In section 3.2, the role of peaks in the natural character of a sound is 
discussed. In section 3.3. the potential impact of phase issues is presented 
and in section 3.4 the influence of masking and auditory scene analysis phe-
nomena on clarity is discussed. Lastly, section 3.5. argues that a more holis-
tic understanding of mix quality may be necessary. 

Testing the spectral clarity predictors in the mix process — 
observations 
The previously established predictors of single sound spectral clarity were 
applied to the mix process of a vocal in an electronica production (“Seren-
dipity”) in order to assess whether they may be able to help improve lead 
sound clarity in this type of production. In particular, the contribution of 
spectral peaks to clarity is investigated further. Feedback was also informally 
gathered from a group of additional audio professionals with no previous 
knowledge of the predictors. The finished track, “Serendipity” can be audi-
tioned online (https://soundcloud.com/kirsten-hermes/serendipity). Conclu-
sions in this paper are based on one mix only, and, as mentioned above, the 
author is both the scientist and subject. While this can be seen as a limitation 
of the study, the aim here is not to develop a universal model for sound clari-
ty in mixes but rather to explore whether EQ-related clarity changes may be 
related to harmonic centroid changes and mid-range spectral peakiness for 
sounds in mixes. For a more holistic understanding of vocal clarity, a larger 
collection of mixes will need to be investigated. Vocal clarity in the current 
mix is also more formally tested in a publication under review (Hermes: 
2018). Here, ten participants compare versions of the mix in terms of clarity 
in a custom GUI. The participants are experienced in critical listening and in 
verbalising sensations of timbre and have no previous knowledge of the pre-
dictors.  

Having completed an arrangement of synthesizers and electronic sounds, 
the author recorded her vocal into Apple Logic Pro X in an acoustically un-
treated home studio, using an SE2200 microphone, an SSL channel strip and 
an Focusrite Saffire Pro 24 audio interface. The recording lacked clarity and 
had unpleasant spectral peaks which made it a useful starting point for test-
ing the predictors. Three vocal mixes were created for the first (30s) verse, 
as follows. First, EQ, compression, deEssing and reverb were applied with-
out explicitly consulting the predictors (version 1). Previous knowledge of 
the predictors still influenced the EQ process: low frequencies were cut and 
high frequencies were boosted in order to raise the HC and it was attempted 
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to reduce some of the unwanted 
spectral peaks. Since the in-
creased audibility of spectral 
peaks of target sounds in mixes 
appears to contribute positively 
to clarity (section 2), it was at-
tempted to remove energy near 
peaks in the vocal from sur-
rounding instruments with EQ. 
However, since there were many 
small adjacent peaks, this was 
not feasible in practice.  

A second version of the mix 
was created, guided by the clari-
ty predictors (version 2). The 
HC of this version was in-
creased by another 6 harmonics. 
Using the computational model 
of mid-range spectral peakiness 
introduced in section 2 (Hermes 
et al, 2017), it was attempted to 
eliminate peakiness entirely. 
This process required a large 
number of additional fine EQ 
adjustments. The resulting ver-
sion was spectrally much flatter 
and free from mid-range spectral 
peakiness. The LTAS and mid-
range spectral peakiness for 
versions 1 and 2 are shown in 
figures 2 and 3. A third version 
was also created where all EQ 
was removed entirely for com-
parison (default version).  In this 
version, the HC was lower than 
in version 1 by 6 harmonics. 
Mid-range spectral peakiness 
was greater than in version 1 but 
lower than in version 2. For 
comparison, the LTAS and 
peakiness for this version is 
shown in fig. 4.  

Since the author’s previous 
knowledge of the predictors had 

Fig. 2: the curve for the mid-range spectral 
peakiness metric (green) is fitted to the ver-
sion 1 LTAS (black). Potentially unpleasant-
sounding peaks in the LTAS lie above the 
curve, while the remaining frequency areas 
lie below it (Hermes et al., 2017). 

Fig. 3: the curve for the mid-range spectral 
peakiness metric (green) is fitted to the ver-
sion 2 LTAS (black). Peakiness is greatly 
reduced in comparison on version 1 and an 
additional HF boost leads to a HC increase 
of 6 harmonics.additional HF boost leads to 
a HC increase of 6 harmonics. 

Fig. 4: the curve for the mid-range spectral 
peakiness metric (green) is fitted to the de-
fault version. LTAS (black). Mid-range spec-
tral peakiness is greater than in version 1 but 
lower than in version 2. The HC is lower than 
in both versions 1 and 2 due to increased area 
around the fundamental frequency. 
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influenced the EQ of the first version, the difference between versions 1 and 
2 was small. The author felt that version 2 sounded somewhat smoother and 
clearer than version 1. Both versions sounded much clearer than the default 
version, which appears to indicate that the HC is a useful clarity predictor in 
this case: the HC was considerably lower in the default version than in ver-
sions 1 and 2. In the following, each version is described in greater detail. 

When played in isolation, the default version sounded fairly natural but 
had excessive energy in the 300Hz area. This gave it a ‘dull’, ‘muffled’ and 
‘muddy’ timbre. There also seemed to be some unwanted noise and distor-
tion as a result of the recording process, leading to a ‘fuzzy’ quality. In the 
mix, the default version sounded particularly unclear and not separate 
enough from other sounds. 

Version 1 sounded much clearer than the default version, both in isolation 
and in the mix. The increased high frequency to low frequency balance made 
it appear more ‘present’ and ‘thin’. Version 1 did sound somewhat less natu-
ral than the default version when played in isolation but clarity and separa-
tion was much improved in the mix. However, by boosting high frequencies 
and cutting low frequencies, an unpleasant peak in the high frequency are 
was made more obvious. The author struggled to identify the exact location 
of this peak. This lead to a degree of ‘harshness’ and the overall timbre did 
not appear to be tonally balanced. Additional boosts and cuts seemed to ei-
ther increase this harshness or make the timbre ‘duller’ like in the default 
version. 

The use of the clarity predictors in version 2 allowed the author to locate 
the aforementioned peak in the 3—5khz area. It was possible to flatten the 
peak without affecting other areas, as the model had correctly identified it as 
contributing to unpleasant mid-range spectral peakiness. Hence, the peak can 
be seen in the LTAS for version 1 (figure 3) but not in the LTAS for version 
2 (figure 4), where it had been removed. Additional, smaller peaks could 
also be treated. In the author’s opinion, the resulting sound was smoother, 
clearer, and more present than in the other two versions with reduced sharp-
ness. The noise and distortion in the default version had been altered to a 
pleasant ‘sizzle’. Despite this improvement, version 2 sounded less natural 
and more processed than version 1. In the mix, the difference between ver-
sions 1 and 2 was small.   

Informal discussions with other audio professionals (students, lecturing 
staff and sound technicians at the University of Westminster with no previ-
ous knowledge of the predictors) revealed some disagreement. While the 
general consensus was that both equalized versions were much clearer than 
the unequalized version, some listeners felt that version 1 was clearer than 
version 2, others the other way around. While some listeners did also de-
scribe version 2 as smoother, they also commented on the fact that it sound-
ed overprocessed and unnatural. It seems that some listeners perceive natu-
ralness as an important aspect of clarity, while others do not (including the 
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author). It appears that the HC is a suitable clarity predictor, since the HC in 
versions 1 and 2 was notably higher than in the default version. Peakiness 
still seems relevant, albeit to a lesser degree, since the version containing no 
peaks (version 2) was not perceived as clearer by all audio professionals 
consulted. It is concluded that the HC would be useful in an overall clarity 
model. The contribution of spectral peaks to naturalness, and therefore spec-
tral clarity, however, needs to be investigated further. In the following sec-
tions, starting points for this investigation are presented.  

When is a spectral peak part of natural character of sound? 
It is possible that some spectral peaks are perceived to be part of the natural 
character of a sound while others are considered unpleasant. If naturalness is 
important for clarity, it is possible that an entirely flat spectrum resulting 
from fine EQ adjustments can reduce clarity much in the same way as a 
peaky spectrum can in other cases. Therefore, it is possible that some spec-
tral peaks appear to increase clarity while others reduce it. However, what 
constitutes a natural timbre may be difficult to measure, as discussed in the 
following part of the paper. 

The impact of spectral peaks on clarity may also, to some degree, depend 
on the instrument. While some instruments tend have fewer peaks (e.g. cel-
lo), others feature natural, strong resonances, such as the Erhu (Chinese vio-
lin) (Hermes et al., 2017). It is possible that recordings of acoustic instru-
ments and voices sound clear when their spectra resemble their natural, un-
recorded spectra. However, spectra can only be measured by recording 
sound and the recording process always introduces spectral distortions.  

Spectral clarity may be even more difficult to establish for newly created 
timbres such as electronic synths. Zagorski-Thomas (2007) relates musical 
elements to “physical manifestations of emotions, gesture and being in 
space”, describing music recordings as sonic metaphors for physiologically 
and culturally determined gestures and morphologies. Further, Zagorski-
Thomas (2017) states that multi-track and electronic music can be interpret-
ed as something impossible and yet understandable. Similarly, Théberge 
(1997) links adjectives used to describe low-level mix parameters to bodily 
sensations. It is possible that listeners might still agree on the clarity of new-
ly synthesized sounds, since there might be a shared understanding of what 
constitutes a ‘believable’ timbre. In the author’s experience, combinations of 
contrasting timbres may result in greater separation in electronic music mix-
es. The author tends to prefer ‘edgy’, ‘hard’ timbres for her own productions, 
some of which have strong peaks (e.g. chiptune and 8-bit timbres). For that 
reason, it would be useful to establish whether there are spectral areas that 
always contribute to clarity in the same way for these sounds. 
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Phase issues 
The LTAS of sounds can be useful for measuring timbral attributes and is 
used in a multitude of research studies (a literature review on clarity can be 
found in Hermes et al., 2017). However, this measurement method ignores 
the relative phases of spectral components and short-term spectral fluctua-
tions. Bregman (2007) states that sounds with the same frequency content 
but differing phases can sound different, which can also influence separation 
in sound mixtures. Laitinen et al. (2013) confirm that humans can perceive 
differences in the phase spectrum of otherwise identical sounds and that the 
phase spectrum affects the perceived timbre, especially in sounds with lower 
fundamental frequencies. Toulson (2008) argues that therefore, it can be 
difficult to fix spectral problem areas in the mix. He points out that an over-
use or incorrect implementation of EQ can be detrimental to the sound quali-
ty due to the resulting phase distortion. Several listeners confirmed that the 
second version of the “Serendipity” vocal sounded over-processed, which 
may have been due to distortions in the phase spectrum resulting from the 
many fine EQ adjustments. 

The recorded vocal take was 30 seconds long, hence the predictors would 
have ignored any large spectral fluctuations throughout. It could be argued 
that in order to keep the complexity low, it is useful to fully understand in 
which way features of steady-state spectra contribute to clarity before con-
sidering temporal factors and phase spectra. However, a fully functional 
clarity model would most likely be more accurate if these parameters were 
also considered.  

Sounds in isolation and in the mix 
As indicated in section 2, the interaction of the target sound (in this case the 
vocal) with the backing track (rest of the mix) also needs to be considered, 
due to masking and fusion phenomena. Parts of the target sound spectrum 
may become masked by the backing track. According to the American Na-
tional Standards Institute (ANSI/ASA: 2013), masking is the process by 
which the threshold of audibility for one sound is raised by the presence of 
another, masking sound. Instruments occupying similar frequency regions in 
music mixes are likely to mask each other. Partial masking can reduce the 
loudness of the target in the mix (Ma et al.: 2014) and is therefore likely to 
lead to a reduction in clarity. Pestana and Reiss (2014) point out that in mu-
sic mixes, EQ should be applied to ensure that no element masks any of the 
frequency content of lead sounds. Overall, it is apparent that masking can 
reduce clarity but it is not clear whether there may be any frequency areas 
that particularly should be unmasked and how this relates to the audibility of 
spectral peaks in the target sound. As mentioned in section 2, it is possible 
that natural peaks in the target sound should be unmasked. Phenomena such 
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as upwards masking, where lower frequencies in the masker can mask higher 
frequencies in the target and temporal phenomena like forward and back-
ward masking add to the complexity (Moore: 2012). 

The audibility of target sounds can also be compromised when not 
enough separation exists from the backing track, even when the target sound 
is unmasked. Fusion and separation phenomena are assessed in the field of 
auditory scene analysis. Auditory scene analysis (ASA) is the process of 
forming mental representations of individual sound sources from the 
summed waveforms that reach the ears. The ASA process consists of the 
following two conceptual stages (Bregman: 2007). First, the auditory system 
divides the input into its constituent atomic units, i.e. packages of acoustic 
evidence (segmentation). Following segmentation, any packages that appear 
to have arisen from the same source are either grouped (to form a stream for 
a given source) or segregated (to form separate streams for different 
sources). Elements that fall in the same auditory stream are perceived as 
stemming from the same sound source. Grouping and segregation are related 
to the perception of separation in music mixes. The factors that determine 
whether sounds are fused or separated are complex but spectral similarity 
between target and backing track is particularly important. 

Woszczyk and Bregman (2005, pp. 13–25) state that the ear is more easi-
ly able to follow a sound in a mix if it has a unique timbre, leading to greater 
separation from other sounds. They state that unique timbres usually have 
obvious features that the listener can track over time. Strong spectral peaks 
may constitute an obvious feature, increasing clarity in mixes. Bregman 
(1990) provides the example of classically trained singers who can enlarge 
their pharynx cavity and produce a strong resonance in the mid-frequency 
area, an area that is usually not occupied by a lot of other instruments in the 
orchestra. This resonance allows e.g. opera singers to be heard over their 
accompaniment, even without the availability of amplification. 

A potentially similar technique appears to be prevalent in pop singing, i.e. 
singing with ‘twang’. ‘Twang’ is a vocal timbre produced through increased 
subglottal pressure, leading to increased energy in the first two formants, 
decreased energy in formants 3 and 5 and an overall higher sound pressure 
level (Sundberg and Thalén: 2010). It is possible that ‘twang’ leads to a 
spectral peak around the first two formants that can increase audibility and 
separation of vocals in mixes. If this peak were to be removed with EQ, clar-
ity may decrease as a result. Therefore, spectral flatness in lead sounds such 
as vocals may decrease spectral clarity in mixes. It would be interesting to 
establish whether there are specific, generalizable frequency areas that con-
tribute to the clarity of lead sounds. Izhaki (2008, p.251) suggests that the 
spectral area for vocal clarity area lies around 2kHz – 9kHz. An increase in 
energy in this area is likely to correlate with an increase in the HC. 
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Holistic perception of clarity in music mixes 
It is possible that target clarity in mixes is not an isolated concept but ties in 
with the holistic perception of the overall mix. The clarity of each sound in 
the mix may bias the perception of the clarity of each other sound. As estab-
lished in section 2, overall tonal balance is another important parameter of 
music mixes. Pestana et al. (2013) explain that spectra of professionally pro-
duced commercial recordings show consistent trends, which can roughly be 
described as a linearly decaying distribution of around 5 dB per octave be-
tween 100Hz and 4000Hz, becoming gradually steeper with higher frequen-
cies, and a severe low-cut around 60Hz. It is possible that overall tonal bal-
ance influences the perception of clarity of each sound therein.  

Similarly, so far, only spectral parameters of clarity have been investigat-
ed. For a complete model of clarity in music mixes, spatial and intensity 
related factors should also be considered, alongside temporal changes in all 
these factors. 

Discussion and suggestions for further research 
As established in the last section, spectral clarity is likely to be a multifacet-
ed, complex concept. The two predictors of single sound spectral clarity still 
appear to be important, in particular the HC. Mid-range spectral peakiness 
can help measure the influence of resonances on the clarity of isolated 
sounds. In music mixes, the influence of peaks on clarity appears to be more 
complex. For a better overall spectral clarity model, further research needs to 
be carried out. First, it would need to be established which spectral peaks 
constitute a part of the natural character of a sound. This is especially diffi-
cult for newly synthesized timbres, where no natural reference exists. Natu-
ralness is likely to influence clarity; however, it should be established how 
strongly these two attributes correlate. Second, it would be useful to assess 
how spectral parameters that are not measured by the LTAS contribute to 
spectral clarity. Phase spectra appear to be particularly important in this con-
text, since phase distortions, as introduced by EQ, can be detrimental to 
sound quality. Third, the impact of the complex relationship between the 
target and backing track spectra on clarity needs to be understood further. 
Not just masking phenomena, but also fusion and separation between target 
and backing track need to be taken into consideration. It would therefore be 
useful to reassess spectral target clarity in mixes using computational audito-
ry scene analysis (CASA) models. The clarity of sounds appears to depend 
on fusion phenomena in a complex way. Fourth, it would be useful to assess 
the impact of non-spectral parameters on clarity, such as spatial, intensity 
related and temporal factors. 
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Lastly, in order to measure mix quality successfully, it would be neces-
sary to measure all high-level parameters of mixes, that is, not only clarity 
and separation, but also balance, impact and interest and the freedom from 
technical faults. Some context-specific parameters could be measured 
through comparison to a reference, e.g. mixes of a similar fashion or style. 
Since the perception of each of these mix parameters may not be isolated, 
their influence on each other should be assessed. 

When spectral clarity is more fully understood, the implications of the 
findings on other research areas should also be explored. For instance, if 
specific resonances do increase clarity in singing, it would be useful if sing-
ers could integrate this knowledge into their training. Similarly, sound syn-
thesis tools could be based on more perceptually informed parameters, such 
as a spectral clarity control. Since all research methods presented in this 
paper (grounded theory, knowledge engineering and autoethnography) have 
limitations, ultimately, an interdisciplinary approach may yield the most 
useful results. Therefore, in the author’s opinion, scientists and creatives 
should continue to collaborate in furthering the understanding of music mix 
quality, since this is likely to lead to a rich, holistic understanding of the 
subject. 

The aim of the current study was to test whether the HC and mid-range 
spectral peakiness may be able predict clarity for sounds in mixes and to 
develop starting points for follow-on research. To conclude, the HC appears 
to be a strong predictor of spectral clarity in music mixes. Mid-range spectral 
peakiness also seems useful but should be supported by a metric for natural-
ness. Additionally, metrics of phase and masking, as well as a CASA model 
should be included in an overall spectral clarity model. Follow-on research 
should not only consider spectral clarity but also consider temporal, spatial 
and intensity related factors. An interdisciplinary approach is likely to pro-
duce useful results. 
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